снком. 5499

GAS CHROMATOGRAPHIC ANALYSIS OF FLAVOUR COMPONENTS WITH CORRELATION ISOTHERMAL RETENTION INDICES*

R. V. GOLOVNYA AND V. P. URALETZ

Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Moscow (U.S.S.R.) (Received May 17th, 1971)

SUMMARY

A method was developed to identify compounds under temperature-programmed gas chromatography conditions with the correlation isothermal retention index. The method permits the use of tabulated index values without the use of standards. The correlation isothermal index was successfully applied for the identification under temperature-programmed gas chromatography conditions of some monocarbonyl compounds in volatile components of fresh salted salmon, sturgeon caviar and salmon roe.

INTRODUCTION

There are a number of correlation isothermal retention index formulae¹⁻⁴ for the identification of substances in linear temperature-programmed gas chromatography (TPGC).

In this study, the previously proposed³ correlation isothermal index, $I_{T_0/\beta}$, has been successfully applied to the analysis of monocarbonyl compounds isolated from volatile components of such food products as fresh salted salmon, sturgeon eaviar and salmon roe.

The data obtained permit us to recommend the use of $I_{T_0/\beta}$ for the identification of complex mixtures separated by TPGC. Since the method in question makes wide use of tabulated isothermal indices, it is easily applicable without the need for standard substances.

EXPERIMENTAL

Fresh salted salmon fillets and sturgeon caviar and salmon roe of high quality were used.

As described earlier⁵, the volatile compounds were isolated *in vacuo*. The salmon had been previously chopped into small pieces. The distillate was treated with 2,4dinitrophenylhydrazine and the resulting dinitrophenylhydrazone (DNP) derivatives of the monocarbonyl compounds were extracted with a mixture of benzene and hexane (I:I). The solvents had been preliminarily purified of trace amounts of carbonyls⁶.

Sauth

^{*} Translated by V. N. VAGRANSKAYA, Moscow, U.S.S.R.

Impurities in the DNPs were removed with ion-exchange resins⁷. Carbonyls were recovered from the DNPs⁸ and 7-8 μ l samples were injected into the GC column in ether solution with a Hamilton syringe.

Analyses were made with a Pye-Unicam 104 series Model 24 gas chromatograph equipped with a double-flame ionisation detector and a flow-rate controller. Glass columns (150 \times 0.4 cm) were packed with Celite 545 (100–120 mesh) coated with 10% of the stationary phases Apiezon-M (Ap-M) and polyethylene glycol adipate (PEGA). Isothermal analyses were carried out at 125°, the nitrogen flow rate being 60 ml/min, with standard C₈-C₁₄ *n*-alkanes used for Ap-M and C₁₁-C₁₇ *n*-alkanes for PEGA.

Retention index temperature gradients, $\partial I/\partial T$, of monocarbonyls were determined under isothermal conditions at 75°, 100°, 125° and 150°, some compounds also being investigated at 50°, 175° and 200°. Linear functions were obtained in each case, and Table I shows $\partial I/\partial T$ values.

TABLE I

TEMPERATURE GRADIENT[®] INDICES OF MONOCARBONYL COMPOUNDS

Stationary phase	Alkan-2-ones,	Alkanals,	Alk-2-enals,	Alk-2,4-dienals,
	C ₅ -C ₁₁	C ₅ -C ₁₁	C ₆ , C ₇ , C ₁₀	C ₆ , C ₈
Apiezon-M	0.6	0.3	2.0	2.5
Polyethylene glycol adipate	8.0	8.0	13.0	15.0

^a Temperature gradients are given for 10° intervals.

Fig. 1. Monocarbonyl compounds in volatiles of fresh salted salmon. Chromatogram made on the PEGA column at 125°. (For identification of the peaks, see text.)

66

J. Chromalogr., 61 (1971) 65-71

We obtained chromatograms of volatile monocarbonyls of the above-mentioned food products and Fig. 1 shows one for the PEGA column. Table II gives index values for all the products using the same column.

TABLE II

RENTENTION INDICES OF MONOCARBONYL COMPOUNDS IN VOLATILE COMPONENTS OF SOME FOOD PRODUCTS ON THE PEGA COLUMN AT 125°

1	Compound				
Salmon	Sturgeon caviar	Salmon roc]¤ of standard substance		
1260	1252	1257	1257	Heptanal	
	5-		1250	Heptan-2-one	
1313	1300	1316	1312	Hex-2-enal	
- 0- 0	- 3- 9	· J = ·	1357	Octanal	
1358	1361	1355	-337		
- 55-	-0	- 555	1350	Octan-2-one	
1416	1416		1411	Hept-2-enal	
~			1457	Nonanal	
1460	1460	1461	~ 1,57	_ · • • • • • • • • • • • • • • • • • •	
	- 1	·	1458	Nonan-2-one	
		1476	10 -	Unidentified	
1510	1514	1512	1510	Oct-2-enal	
		1529	0	Unidentified	
			1555	Decanal	
1560	1560	1559	000		
		000	1557	Decan-2-one	
т 583	1582	1584	1580	Hepta-2.4-dienal	
1605	1615	1607	1609	Non-2-enal	
1620			-	Unidentified	
1637				Unidentified	
1640				Unidentified	
			1654	Undecanal	
1654	1657	1651	<u> </u>		
	. 57	~	1655	Undecan-2-one	
1678	1674	1675	1674	Octa-2,4-dienal	
1712	1702	1703	1708	Dec-2-enal	
-/	-/		1753	Dodecanal	
1754		1758	-755	· ···	
-154		- 75-	1755	Dodecan-2-one	
1780	·		1774	Nona-2.4-dienal	
-100			··· / / ·	····· · · · · · · · · · · · · · · · ·	

^a Alk-2,4-dienal indices are published here for the first time; the other ones are taken from ref. 9.

The Ap-M column temperature increased from 75° to 200° at a rate of $\beta = 6^{\circ}/\text{min}$, the flow rate being 60 ml/min. Standard C_6-C_{14} *n*-alkanes were used for the calculation of retention indices. The PEGA column temperature varied from 75° to

J. Chromatogr., 61 (1971) 65-71

175°, with $\beta = 4^{\circ}/\text{min}$, nitrogen flow rate 40 ml/min and C₈-C₁₉ *n*-alkanes. Fig. 2 gives one of the chromatograms. Index values are listed in Tables III and IV.

Fig. 2. Monocarbonyl compounds in volatiles of fresh salted salmon. Chromatogram made on the PEGA column under TPGC conditions. (For identification of the peaks, see text.)

DISCUSSION

We have previously proposed⁹ a GC method of identifying substances in mixtures containing n-alkanals, n-alk-2-enals, n-alk-2,4-dienals, n-alkan-2-ones, symmetrical n-alkanones and a number of isomonocarbonyl compounds without the need for a standard to be used. Identification is effected with a system of equations showing the dependence of retention indices on the number of carbon atoms and the boiling points of substances.

The carbonyl compounds under investigation were isolated from flavour distillate and were subsequently analysed isothermally by this method and under TPGC conditions. Identification under TPGC conditions was accomplished with the aid of the isothermal indices we had obtained, taking into account the TPGC experimental conditions, *viz.* initial temperature, T_0 , temperature programming rate, β , and gas flow rate, using the following equation³:

$$I_{T_0/\beta} = I_{T_0} + \frac{\beta \cdot T_x}{2} \cdot \frac{\partial I}{\partial T}$$
(1)

where $\partial I/\partial T$ = index temperature gradient, T_x = retention time, and I_{T_0} = isothermal index at initial temperature T_0 . Good agreement between the experimental I_{pr} indices of VAN DEN DOOL¹⁰ and $I_{T_0/\beta}$ calculated from the isothermal data proves a correct identification (see Tables II and IV). The difference between $I_{T_0/\beta}$ and isothermal indices is small on the non-polar Ap-M column, while in the case of the PEGA column with its more pronounced polarity, this difference becomes considerable, for

TABLE III

RETENTION INDICES OF MONOCARBONYL COMPOUNDS IN VOLATILE COMPONENTS OF SOME FOOD PRODUCTS ON THE Ap-M COLUMN UNDER TPGC CONDITIONS

I_{pr}^{u}			Compound	
Salmon	Sturgeon caviar	Salmon roc	Ι _{Τ0} /β ^b	-
721	726	721	726	Pent-2-enal
753	747	755	75I	Hexan-2-one
770	772	771	770	Hexanal
802		808	··	Unidentified
823	825	833	828	Hex-2-enal
847				Unidentified
852	856		852	Heptan-2-one
		865		Unidentified
868	868	875	871	Heptanal
887	889		880	Hexa-2.4-dienal
006		904		Unidentified
027		030	031	Hept-2-enal
		046	20-	Unidentified
040	052	056	052	Octan-2-one
076	072	071	072	Octanal
087	087	087	000	Hepta-2.4-dienal
1011		1005		Unidentified
1010		1022		Unidentified
1033	1030	1028	1033	Oct-2-enal
		1041		Unidentified
1051	1054	1052	1053	Nonan-2-one
		1050		Unidentified
1072	1073	1076	1073	Nonanal
1072	1085	1004	1089	Octa-2.4-dienal
T TOT				Unidentified
TIIS	·	1122		Unidentified
TI31	1136	8511	1134	Non-2-enal
1153	1156	1158	1154	Decan-2-one
		1168		Unidentified
1175	1177	1180	1175	Decanal
1188	1196	1187	1190	Nona-2.4-dienal
1209	_ _	1201	-	Unidentified
1236	1239	1234	1236	Dec-2-enal
1250	1261	1257	1257	Undecan-2-one
1272	1280	1281	1276	Undecanal
1300	· · · · · · · · · · · · · · · · · · ·	1301	1295	Deca-2,4-dienal
1318		1326		Unidentified
1330		1342	1338	Undec-2-enal
1361		1356	1358	Dodecan-2-one
0 -		エングピ	1270	Dodoonal

^a I_{pr} determined according to the equation of VAN DEN DOOL¹⁰. ^b $I_{T_0/\beta}$ calculated according to eqn. I.

example thirty-four index units for *n*-heptanal (cf. Tables II and IV). Comparing the results of TPGC and isothermal analyses, we may, on the basis of eqn. I, calculate the temperature gradient which, being a characteristic property¹¹, offers an additional identification criterion. Another advantage of comparing isothermal and TPGC chromatograms is that if two substances with identical indices, analysed isothermally, give one peak, the identification error on a TPGC chromatogram can be easily detected in the case that the $\partial I/\partial T$ values of the substances under investigation are different.

TABLE IV

RETENTION INDICES OF MONOCARBONYL COMPOUNDS IN VOLATILE COMPONENTS OF SOME FOOD PRODUCTS ON THE PEGA COLUMN UNDER TPGC CONDITIONS

Salmon		Sturgeon caviar		Salmon roc		Compound
Ipra	IT 0/Bb	Ipr	Iτ _o /β	Ipr	Iτ./β	-
1118	1121	1116	1120	1122	1122	Hexan-2-one; hexanal
1164	1169	1166	1168	1172	1170	Pent-2-enal
· '				1201	•	Unidentified
1223	1225	1220	1224	1224	1225	Heptan-2-one; heptanal
1251	•	1245	·	1252	-	Unidentified
1270	1270	1274	1269	1271	1271	Hex-2-enal
	,		-	1283	•	Unidentified
				1311		Unidentified
1320	1329	1322	1326	1328	1329	Octan-2-one; octanal
		1360	•	1362		Unidentified
1383	1378	1377	1376	1378	1379	Hept-2-enal
	- 57 -		07	1389	015	Unidentified
1434	1434	1428	1430	1430	1434	Nonan-2-one: nonanal
			15	1440	101	Unidentified
1454	1457	1455	1454			Hexa-2.4-dienal
1470	1480	1482	1478	1481	1481	Oct-2-enal
1502		1500	17	1508	• .	Unidentified
1540	1530	1536	1537	1537	1530	Decan-2-one: decanal
1556	1553	1557	1551	1555	1554	Hepta-2.4-dienal
	-333		- 22-	1574	- 554	Unidentified
1582	1584	1578	1580	1588	1585	Non-2-enal
1504	-5-4	1592			- 5 - 5	Unidentified
1615						Unidentified
1625		·		1626		Unidentified
1647	1643	1646	1641	1646	1644	Undecan-2-one: undecanal
1658	1656		•	•	• •	Octa-2.4-dienal
1600	1606	1605	1603	1703	1698	Dec-2-enal
				1725		Unidentified
1740	1747			1752	1748	Dodecan-2-one: dodecanal
1770	1768			- / 5	- / 1 -	Nona-2,4-dienal

* I_{pr} determined according to the equation of VAN DEN DOOL¹⁰.

^b $I_{T_0/\beta}$ calculated according to eqn. 1; temperature gradients and isothermal indices are taken from Tables I and II, respectively.

For example, examination of isothermal and TPGC chromatograms of fresh salmon monocarbonyls on the PEGA column shows that peak 6 (Fig. 1) of the isothermal chromatogram corresponding to oct-2-enal does not belong to a single substance, but represents three compounds: oct-2-enal, hexa-2,4-dienal and an unidentified compound (peaks 9, 10, 11, Fig. 2).

Some volatile monocarbonyls of food products could not be identified. It was difficult to relate the peaks obtained on different columns to one substance owing to the small sizes of the peaks.

In our next communication, we hope to give a more detailed account of the carbonyl composition of the flavours of the food products dealt with in this paper.

Our results show that the method proposed here makes it possible to use for identification isothermal indices from tables easily available in many recent publications.

Tabulated indices for identication in TPGC can be successfully applied, pro-

vided that satisfactory reproducibility of chromatographic columns is possible. In this connection, a method characterising a column in some definite terms acquires partic ular importance, for example Rohrschneider constants.

Our monocarbonyl isothermal indices obtained on Celite 545 with 10 % Ap-M differed insignificantly from the corresponding values in McReynolds' tables, despite the use of Chromosorb W as a support. The three years' research in our laboratory with different types of glass columns containing Celite 545 coated with PEGA have shown the accuracy of reproduction for isothermal indices to be about three units. This is sufficient for identification in TPGC.

REFERENCES

- I J. C. GIDDINGS, in N. BREUNER, J. E. CALLEN AND M. D. WEISS (Editors), Gas Chromatography, Academic Press, New York, 1962, p. 57.
- 2 G. GUIOCHON, Anal. Chem., 36 (1964) 661.
- 3 R. V. GOLOVNYA AND V. P. URALETZ, J. Chromatogr., 36 (1968) 276.
- 4 L. ERDEY, J. TARÁCS AND É. SZALÁNCZY, J. Chromatogr., 46 (1970) 29.
- 5 R. V. GOLOVNYA, G. A. MIRONOV AND I. L. ZHURAVLEVA, Zh. Anal. Khim., 22 (1967) 612.
- 6 D. P. SCHWARTZ AND O. W. PARKS, Anal. Chem., 33 (1961) 1396.
- 7 D. P. SCHWARTZ AND A. R. JOHNSON, Microchem. J., 6 (1962) 37.
- 8 L. A. JONES AND R. J. MONROE, Anal. Chem., 37 (1965) 935. 9 R. V. GOLOVNYA AND V. P. URALETZ, Zh. Anal. Khim., 24 (1969) 449 and 605.
- 10 H. VAN DEN DOOL AND P. D. KRATZ, J. Chromatogr., 11 (1963) 463.
- 11 N. C. SAHA AND G. D. MITRA, Technology, 5 (1968) 212; 6 (1968) 119.

J. Chromatogr., 61 (1971) 65-71